University School of Basic & Applied Sciences

Guru Gobind Singh Indraprastha University

Scheme and Syllabus for PhD Programmes

Physics

Chemistry Mathematics

Scheme and Syllabi 2021-onwards

PROGRAMME OUTCOMES

(Ph.D. in PHYSICS, CHEMISTRY AND MATHEMATICS PROGRAMMES)

PO1 KNOWLEDGE, **CRITICAL AND CREATIVE THINKING**: The student will develop the skills for acquiring the right knowledge, skills and and critical and creative ways of approaching and carrying out research

PO2 UNDERSTANDING, GATHERING AND REVIEWING INFORMATION AND DATA: The student will develop a thorough knowledge of literature review and a comprehensive understanding of methods and techniques applicable to their own research

PO3 THE ABILITY TO CARRY OUT ORIGINAL AND INDEPENDENT RESEARCH: The student will learn to apply advanced and specialised skills and be able to act independently in the planning and implementation of research

PO4 COMMUNICATION AND LEADERSHIP SKILLS: Students participate in seminars, research group meetings, competitions, conference talks, poster presentations, and teaching, and learn to communicate effectively. They also learn leadership through communication and working effectively with others and professional conduct that are needed for the effective management of research.

PROGRAMME SPECIFIC OUTCOMES

The PhD Programmes in Physics, Chemistry and Mathematics deal with areas of research that are specializations of the Faculty of the school which could be experimental or theoretical.

PHYSICS

PSO1: Learning to present the problem in the context of the particular research area in Physics and the work done globally. Detailing the aspects of the system, the models, the experimental/theoretical approach and methodology. Having clarity on all basic concepts.

PSO2: Developing problem solving and experimental techniques in Physics like modelling, simulation, analytical methods, instrumentation, sample preparation, characterisation, computational techniques, visualisation etc in the particular area of Physics research

PSO3: Learning to interpret and communicate results effectively. Learning to write a manuscript clearly and professionally and being familiar with all aspects of publishing

CHEMISTRY

PSO1: Learning to present the problem in the context of the particular research area in chemistry and the work done globally. Detailing the aspects of the system, the models, the experimental/theoretical approach and methodology. Having clarity on all basic concepts.

PSO2: Developing problem solving and experimental techniques in chemistry like synthesis, analysis, instrumentation, sample preparation, characterisation, computational techniques, visualisation etc in the particular area of chemistry research

PSO3: Learning to interpret and communicate results effectively. Learning to write a manuscript clearly and professionally and being familiar with all aspects of publishing

MATHEMATICS

PSO1: Learning to present the problem in the context of the particular research area in mathematics and the work done globally. Detailing the aspects of the system, the models, the experimental/theoretical approach and methodology. Having clarity on all basic concepts.

PSO2: Developing problem solving a techniques in mathematics, numerical and computational techniques, statistical analysis, visualisation etc in the particular area of mathematics research

PSO3: Learning to interpret and communicate results effectively. Learning to write a manuscript clearly and professionally and being familiar with all aspects of publishing

MAPPING BETWEEN	PROGRAMME OUTC OUTCOM		MME SPECIFIC
PO/PSO	PSO1	PSO2	PSO3
PO1	5	7	5
PO2	6	8	9
PO3	4	5	9
PO4	3	7	8

COMMON SCHEME AND SYLLABUS for DOCTOR IN PHILOSOPHY

- 1. Physics
- 2. Chemistry
- 3. Mathematics

S. No.	Code	Paper	L	Р	Credits
1.		Research Methodology	4	0	4
		for Science &			
		Technology			
2.		Introduction to MATLAB	2	0	2
3.		MATLAB and	0	2	2
5.		Computational Method Lab	Ŭ	_	
4.		Nano Structured	4	0	4
		Thermoelectric Materials			
5.		Advanced Characterization			
		Techniques			
6.		Solar Radiation	4	0	4
7.		Heterocyclic Chemistry &	4	0	4
		Synthon Approach			
8.		Biological Chemistry	4	0	4
9.		Natural Products and	4	0	4
		Instrumentation			
10		An Introduction to Financial	4	0	4
10		Mathematics			
11		Lie groups and	4	0	4
		Homogeneous spaces			
12		Differentiable Manifolds	4	0	4
13		An introduction to fuzzy	4	0	4
10		mathematical programming			
14		Nonlinear Dynamics	4	0	4
15		Space Dynamics	4	0	4
16		Wavelet Analysis	4	0	4
17		Mathematical Modelling and Ecology	4	0	4
18		Stochastic Process, Queuing Theory & Reliability	4	0	4
19		Thermoluminescence dosimetry	4	0	2
20		Ion Beam	4	0	4
21		Chemical Synthesis of	4 0		4
		Nanomaterials	4	0	4
22		Synthesis of Nanomaterials & Introduction to	4	U	4
		Nanocomposites			

23.		Synthesis and Application of	4	0	4
		<u>Organophosphorus</u>			
		<u>Compounds</u>			
24		Synthesis, Isolation and	4	0	4
27.		Purification of Air Sensitive			
		Compounds			

Paper Code:			EARCH METHODO		L	T/P	С
Раре	r ID:				4	-	4
Marking Sche	eme:			•			
•	Teacher	s Continuous Eva	aluation: marks				
•	Term en	nd Theory Examin	nations: marks				
Instructions f	or paper se	etter:					
Course Objec				· · · · · · · · · · · · · · · · · · ·			
1:	•		some details assoc he different branch				
2:	Learn met	thods to devise a	ind design a resear	ch set-up			
3:	Planning t	heir research ca	reer				
4:	Conclude	research in repo	rt writing and mea	ningful interpi	retatio	on	
Course Outco	omes (CO):						
CO1:			oncepts of research	and importa	nce.		
CO2:	Collect da	ta through expe	riments or survey a	s per research	n requ	irement	
CO3:	O3: Develop understanding on various kinds of research, objectives of doing research research process				research,		
CO4:	Write rese	earch report, res	earch proposal wit	h proper citati	ions.		
Course Outco		•	utcomes (PO) Map			2: Medi	um, 3: High)
CO/PO	D	PO1	PO2	PO3		F	PO4
CO1		3	3	3			3
CO2		2	3	2			1
CO3		3	2	3			3
CO4		3	3	2			3

UNIT-I

Basic concepts in Scientific approach to research: Definition, motivation & significance of research, types of research, research process and steps in conducting research; Planning research Problem identification and formulation; Research design; Application of Research scenario in India. UNIT-II

Literature survey and Report writing: Review of the publisher research in the relevant field; Reviewing literature; Report Preparation, Structure of Report, Report Writing Skills, Citations, Research Papers,; formulation of research projects proposal; Types of reports, bibliography. UNIT-III

Research Ethics & Plagiarism: Values, standards & practices; scientific misconduct; human participants & animal subjects, authorship allocation of credit, competing interests, commitments & values. Definition, types of plagiarism, unintentional plagiarism, mechanisms for avoiding plagiarism.

UNIT-IV

Invention, Innovation, IPR: Understanding of invention & innovation and its role in economic development; patents & copyrights, importance & basic knowledge of Intellectual Property Right (IPR); what can and cannot be protected.

Note: In the backdrop of the above, the assignments may be in the context of the chosen research field of the scholar, and may be designed to facilitate in identity the topic and in the process of Synopsis preparation for their respective proposed research. The work out format for the assignments must be intensively participatory; may be conducted by way of presentations and participative discussions in cl

SUGGESTED REFERENCES

- 1. Research Methodology Methods and Techniquest C.R. Kothari, New Age Intl. Pub. (2004)
- 2. Business Statistics for contemporary decision making- Ken Black, John Wiley and Sons, Inc. 2010.
- 3. Research Methodology (Concept and Cases)-Deepak Chawla & Neena Sodhi, Vikas Publication House (P) Ltd. (2011)
- 4. Research Methodology- Debashis Chokarvaty, Surbhi (P) Ltd. (2010)
- 5. Research Methodology-Navin Sharma, Deep & Deep (P) Ltd. (2007)
- 6. Research Methodology Ranjit Kumar, Delhi Pearson Education (2006)
- 7. "The Role of Invention, Innovation and The Industrial Property System in Economic Development", <u>www.wipo.int/cdocs/mdocs/innovation/en/.../wipo_inn_cai_97_1.doc</u>
- 8. MLA Handbook for Writers of Research Papes- Joseph Gibaldi, New Delhi, Affiliated East West Press (1999 15th edition).

Раре	r Code:	-	troduction to MAT mputational metho		L	T/P	С
Рар	er ID:		•		2	-	2
Marking Sch					I		
		ous Evaluation:	25 marks				
		Examinations:					
	for paper set						
Course Obje	ctives:						
1:	Introduce	the students fro	om diverse backgrou	unds to the in	nporta	nce of con	nputationa
	technique	es and to expand	their mathematica	al skills in are	as of n	umerical r	nethods.
2:	Introduce	and train stude	nts in computation	al methods w	ith MA	ATLAB as t	he
	programn	ning language					
3:	programm	Expose students to introductory topics and the basics of numerical techniques and programming. Problems are selected from a list which is updated from time to time in tune with the needs of industry/research and topical subjects.					
4:		, simulation, mo	the logic behind sc delling and designii				
Course Outo							
CO1:		•	d to develop the fla		elling a	nd simula	tion.
CO2:			vledge of MATLAB.				
CO3:	for applic	ation to real life				-	
CO4:	To solve s	ome famous and	d advanced physics	/ chemistry	problei	ms using s	imulation.
Course Outo	omes (CO) to	Programme Ou	itcomes (PO) Mapp	oing (Scale 1:	low, 2	: Medium	, 3: High)
CO/	PO	PO1	PO2	PO3		P	04
CO	1	3	3	2			2
CO2		3	2	3			2
CO3							<u> </u>
	3	2	3	3			3

UNIT-I

Introduction to the MATLAB programming language: Operations in MATLAB: basic mathematical operations with matrices, arrays, etc. Plotting with MATLAB: line plots, 1-D, 2-D, 3-D, mesh grid, labelling axes, legends, importing and plotting data files in MATLAB; Root fnding and curve fitting.

UNIT-II

Numerical methods for solving ordinary differential equations: The Euler method, Programming in MATLAB to solve 1st order and 2nd order ODEs by Euler method, Solving ODEs using inbuilt MATLAB solvers

UNIT-III

Numerical methods for Integration: Rectangular, Trapezoidal, Simpson methods

Using direct MATLAB solvers for integration, Introduction to Monte Carlo methods: random numbers, Monte Carlo Integration. Some examples from linear algebra and matrices; Fractals, polynomial fit and exponential fit.

UNIT-IV

Time Series Analysis Methods: Stationary processes, Lag plots, Auto correlation function, Power spectral density.

References

- 1. Rudra Pratap, Getting started with MATLAB [Oxford University Press]
- 2. Chapman, Essentials of MATLAB Programming
- 3. Balagurusamy, Numerical Methods [Tata McGraw Hill]
- 4. Tao Pang, An introduction to Computational Physics [Cambridge University Press]
- 5. Andi Klein and Alexander Godunov, Introductory Computational Physics [Cambridge University Press]
- 6. Ward Cheney and David Kincaid, Numerical Methods and Computing
- 7. Alfio Quarteroni and Fausto Saleri, Scientific Computing with MATLAB and Octave
- 8. S. R. Otto and J. P. Denier, An Introduction to Programming and Numerical Methods in MATLAB

Рар	er Code:	Paper: M	ATLAB and Comp	utational	L	T/P	С
			Methods Lab				
	aper ID:				0	2	2
Markin	g Scheme:						
			us Evaluation: 25				
			xaminations: 75	marks			
Instruc	tions for pap	per setter:					
Course	Objectives:						
1:	-	the students	from diverse bac	kgrounds to	the ir	nportan	ce of
			and to expand th	-		-	
	numerical	•	·				
	Introduce t	he concepts an	d theory of variou	s simple proble	ems a	nd algor	ithms
	that can be	e subsequently a	applied to program	nming in MATL	AB to	solve th	en in
	the Lab.						
2:	Introduce a	and hands on tr	aining of students	in computatio	nal m	ethods v	vith
	MATLAB as	s the programm	ing language				
3:			m a list which is up		ne to	time in t	une
			/research and top				
4:			the logic behind s				
		•	tion, modelling an	d designing the	e algo	rithms a	nd
	translating	them into prog	rammes				
Course	0	<u>(0)</u>					
COURSE CO1:	Outcomes (ng understanding	of the methom	otion1	akilla na	adad
CO1.	for program		ing understanding	of the mathema	ancai	SKIIIS IIC	cucu
CO2:			g knowledge of M	ATLAB.			
CO3:			some famous and		ics pr	oblems u	ising
			wise difficult to so				8
CO4:			to develop the flav			d simula	tion.
Course			nme Outcomes (Po		-		
Mediu	m, 3: High)	-					
CO	/PO	PO1	PO2	PO3		PO4	
C	01	3	3	3		2	
C	02	2	3	3		1	
	03	3	2	2		3	
C	04	3	1	2		3	

UNIT-I
Plotting
 (a) Eigenvalues & Eigenfunctions for Particle in a Box – 1D & 2D; (b) Hydrogen atom wave functions
UNIT-II
ODE's – exmples-

(a) Simple, damped and driven Harmonic Oscillator;

- (b) Van der Pol Oscillator;
- (c) Radioactive Decay;
- (d) LCR Circuit;
- (e) Schrodinger equation in 1D;
- (f) Coupled ODEs The Lorenz Equations;
- (g) Calculation of Eigen functions (π molecular orbitals using HMO theory);
- (h) Kinetics of oscillatory reactions.;

UNIT-III

Monte Carlo mthods

(a) Simulate coin toss, die roll etc. using MATLAB's inbuilt commands;

(b) Estimating the value of "pi" using random numbers on a circle & sphere;

(c) Monte Carlo Integration

UNIT-IV

Time Series Analysis Methods: Stationary Processes, Lag Plots, Auto Co-relation Function, Power Spectral Density

This list may be updates/modified to included related application from time to time

Assignments may be designed relevant to the broad area of research of the research scholar.

References

- 1. Rudra Pratap: Getting started with MATLAB [Oxford University Press]
- 2. Chapman: Essentials of MATLAB Programming
- 3. Tao Pang: An introduction to Computational Physics [Cambridge University Press]
- 4. Andi Klein and Alexander Godunov: Introductory Computational Physics [Cambridge University Press]
- 5. Ward Cheney and David Kincaid: Numerical Methods and Computing
- 6. Alfio Quarteroni and Fausto Saleri: Scientific Computing with MATLAB and Octave
- 7. S.R. Otto and J.P Denier An Introduction to Programming and Numerical Methods in MATLAB.

Рар	er Code:	Paper: Nar	nostructured Ther Materials	moelectric	L	T/P	С
Pa	aper ID:				4	-	4
•			ation: 25 marks				
		eory Examinat	tions: 75 marks				
	Objectives:				6 .1		
1:	in the ener		lectric Materials is /sics & engineerir able energy.				
2:	This course	demands an e	experimental scien	ce and will in	troduc	e stude	nts to
	this exciting future trenc		d cover its main i	deas, current	develo	opments	s, and
3:	To introduc	e students to	the basic concep	ts in transpor	t prop	erties a	nd to
	familiarize t	hem with its ur	nique developmen	t of good ther	moeleo	ctric mat	terials
	and applicat	tions which for	rm a base for both	n working in u	pcomi	ng comp	banies
	as well as re	search groups	in top IT compani	es and acader	nia		
4:	figure of me and decoup can, visualiz	rit, and therm le of thermoel e the various v	the basics of elect oelectric device co ectric properties. way to improve the e thermoelectric o	oncepts, nano To introduce t e thermoelect	science hese c	e concep oncepts	ots one
Course	Outcomes (C	:0):					
CO1:	-	-	to better unders	tand the impa	act of	this pov	verful
			the new frontiers				
CO2:			r with the basic kr	nowledge requ	uired to	o develo	ра
CO3:		t thermoelect					a .a d
03:	Concompletion of this course, the student will be ready for assignments and placement in the growing energy sector.						anu
CO4:			o start their start-	uns to develo	n econ	omically	,
004.			rmoelectric device	-		-	1
	Outcomes (O		nme Outcomes (Po				
	m, 3: High)						
)/PO	P01	PO2	PO3		PO4	
	:01	3	2	3		2	
	:02	1	3	2		1	
	203	3	3	2		3	
C	204	2	3	2		3	

UNIT-I

Electronic structure of material:

Statistical equilibrium of free electrons: density of states for bulk and low dimensional system, distributions: Maxwell Boltzmann, Fermi Dirac, carries concentration, impurity semiconductors, quantum wells, quantum wires and quantum dots.

UNIT-II

Static properties:

Specific heat of materials, thermionic emission

Transport properties of materials:

Boltzmann transport equation, particle diffusion, electrical and electronic thermal conductivity, Isothermal Hall effect Phonons, Lattice thermal conductivity Transport properties of quantum wells, quantum wires and nanocomposites.

UNIT-III

Thermo Electric Materials:

See beck coefficient, Peltier effect, Figure of merit, Selection of the material for TEM, Comparability parameter, Efficiency, Different types of TEM and recent development in low dimensional TEM, doping, alloying and size effects and its applications.

UNIT-IV

Thermoelectric module and device:

Introduction, Single mode and multi-mode devices, Segment thermoelectric model, Modelling and optimization of Segmented Thermoelectric Uncouples, Optimum Conversion Efficiency

References

1. Statistical physics: Patheria (Butterworth-Heinemann, Oxford, 1972)

- 2. Statistical physics: K.Huang(Wiley Eastern, New Delhi, 1975)
- 3. B.K.Aggarwal & Melvin Eisner : Statistical physics (Wiley Eastern, New Delhi)
- 4. CRC handbook of Thermoelectrics, Ed. CR Rowe, 1955

Ра	per Code:	Paper: A	dvanced Characte Techniques	erization	L	T/P	С
Paper ID:						-	4
	g Scheme:				4		
	-	rs Continuous I	Evaluation: 25 ma	rks			
			ninations: 75 ma				
Course	Objectives:	•					
1:	To understan and TEM	d the basic con	cepts of Instrume	nts and utility	of the	XRD, SE	M
2:		•	arn the state of art perimental resear		d pow	er of	
3:			electromagnetic r copy to identify th		mattei	r with re	espect
4:	Photolumines	scence Specti hermogravime	al Principle, Instr roscopy, Raman tric Analysis (TGA)	Spectroscop	oy, E	lectron	ons of Spin
Course	Outcomes (CO)						
CO1:		e course the st experimental r	udents are able to esults.	acquire enou	gh kno	wledge	to
CO2:		•	erstand and analys ology, chemical ar	•			
CO3:			d instrumentation /, and will be able				-
CO4:	students will	understand ins	trumentation and	application of	Photo	lumines	cence
		metric Analysis an use that duri	Spectroscopy, (TGA) and Differ ing their		Spin Ig Calo		nance, (DSC)
Course			Outcomes (PO) N	Aapping (Scale	e 1: Iov	N. 2:	
	n, 3: High)				. 1. 101	.,	
	0/PO	PO1	PO2	PO3		PO4	ļ
	CO1	3	-	-		-	
	CO2	-	3	-		-	
	CO3	-	-	3		-	
	CO4	-	-	-		3	

UNIT-I

Structural Characterization:

(a) X-ray Diffraction

Components of X-ray diffraction-X-ray soruce; Specimen; optics; detector ;- X- ray saftey , Indexing of powder x-ray diffraction and sample prepartion methods;

(b) **Determination** : Crystallite Size;Phase Determination,Crystal Structure(Cubic only),lattice paratmeter, qualitative analysis of powder mixure, Breif introcduyction of Retveild analysis.

UNIT-II

Electron Diffraction :

- (a) Electron Microscopy Methods- Electron beam specimen interations, Scanning electron microscopy(SEM), Chemical Analysis, Transimission electron microscopy(TEM), energy disperseive X-ray spectroscopy analysis, Specimen Prepartion for SEM analysis and Specimen Prepartion for TEM analysis; High Resulation Transimission Electron Microscopy.
- **(b) Transport Characterization:** Electrical Conductivity, Seebeck Coefficient, Thermal Conductivity, Techniques for measurements of Hall effect (Over View only), AC and DC conductivity.

UNIT-III

Spectroscopic Techniques: Nuclear Magnetic Resonance (NMR) Spectroscopy, Infra Red (IR)Spectroscopy-Fourier Transform Infrared Spectroscopy (FTIR) and Attenuated Total Reflection Spectroscopy (ATR), Ultra Violet-Visible (UV-Vis) Spectroscopy.

UNIT-IV

General Principle, Instrumentation and Applications of Photoluminescence Spectroscopy, Raman Spectroscopy, Electron Spin Resonance, Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC)

References

- 1. Element of X-ray diffraction, BD Cullity and SR Stock, 2001, Pearson.
- Electron Microscopy: Principles and Fundamentals, Edited by : <u>S.</u> <u>Amelinckx, Dirk vanDyck, Gustaaf van Tendeloo, J. Van Landuyt, 2008,</u> John Wiley & Sons.
- 3. An Introduction to Surface Analysis, John F. Watts, John Wolstenholme, 2003, Wiley.
- 4. ASM Hand Book Volume 10- Material Characterization, Edited by : Thomas J. Bruno, Ryan Deacon, Jeffrey A. Jansen, Neal Magdefrau, Erik Mueller, George F. Vander Voort, Dehua Yang, 2019, ASM International.
- 5. Organic Spectroscopy, William Kemp, 1991, Palgrave, London.
- **6.** Thermal Analysis, Wendlandt, Wesley William, 1986, Wiley-Interscience. New York.

Paper Cod	le: Paper: Solar radiation and Solar Photovoltaic Science and Engineering	L	T/P	С
Paper ID	:	4	-	4
Marking Sche	eme:			
•	Teachers Continuous Evaluation: 25 marks			
•	Term end Theory Examinations: 75 marks			
Course Object	tives:			

	-					
1:	To have	To have an overview about the status, recent trends and future scope of solar				
	energy ir	ergy in general and solar photovoltaic in particular.				
2:	Designin	g of a Photovoltai	ic system			
3:	To be aw	vare of recent rese	earch trends and e	emerging technolo	gies in	
	Photovo	ltaic.			-	
4:	To under	stand concepts o	f solar radiation			
		· · · · · · · · · · · · · · · · · · ·				
Course	Outcome	s (CO):				
CO1:	Explain t	he existing solar e	energy potential.			
CO2:	Explain t	he operation and	performance of so	olar Photovoltaic s	system	
CO3:	Perform	a solar resourd	ce assessment of	f a potential sit	e and develop	
	understa	inding on the Pho	tovoltaic plant des	sign.	-	
CO4:	Have suf	ficient knowledge	e of recent trends a	and emerging tech	nnologies in	
	solar Pho	otovoltaic.				
Course	Outcome	s (CO) to Program	n Outcomes (PO) N	Mapping (Scale 1:	low, 2:	
Mediur	m, 3: High)				
CO	CO/PO PO1 PO2 PO3 PO4					
C	01	1	3	3	3	
C	02	3	3	2	2	
C	03	3	3	2	3	
C	04	1	3	3	3	

Unit I:

Introduction: Current energy scenario and importance of renewable energy in general and solar energy in particular, Solar radiation, usefulness of radiation data for solar engineers, designers and architects. Sun-Earth relations, Thermal radiation, Extra-terrestrial Solar Radiation, Interaction of Solar radiation with atmosphere, various scattering, absorption and reflection processes, Terrestrial Solar Radiation, radiation data from satellite, Solar radiation measuring instruments: Pyranometer, Pyrheliometer, sun shine recorder etc., hourly global, beam and diffuse radiation, estimation of global radiation on horizontal surface, importance of radiation data for modelling of devices and simulations

Unit II :

Status, Trends, Challenges and the future scope of Solar photovoltaics: What is photovoltaics, history, goals of todays PV research, global trends, motivation for photovoltaic application and development, crystalline Silicon technology, progress and challenges, Physics of solar cell: fundamental properties of semiconductors, pn junction diode electrostatics, solar cell fundamentals, spectral response, theoretical limits of photovoltaic conversion, V-I characteristics of solar cell, properties of efficient solar cells PV cell, module, Array, Energy storage, study of associated system electronic components in brief like charge controller, battery, inverter, wiring, stand etc.

Unit III:

PV System Designing: Designing, modelling and simulation of standalone PV Systems, Designing, modelling and simulation of PV, hybrid systems, utility interactive system.

Unit IV:

Emerging PV Technologies and their future: Dye sensitized solar cell, other variants of Dye Sensitized solar cells, Perovskite solar cell, organic solar cell and other emerging technologies in solar photovoltaics.

Refere	nces
1.	Solar Energy: Fundamentals, design, Modelling and Applications, G.N.
	Tiwari,2002, Narosa Publishing house
2.	Understanding renewable energy systems, Volker Quaschning, 2006, Replika Press
	Pvt. Ltd., India.
3.	Alternative Energy, Vol 1-3, Neil Schlager and Jayne weisblatt, 2006
4.	Thompson Gale Generating electricity from the sun, Fred C Treble, 1991, Pergramon
	Press
5.	Solar Cells: Operating principles, technology and system Applications, Martin A.
	Green, 1982, Prentice Hall
6.	Physics of solar cells, Peter Wurfel, 2016, Wiley VCH Verlag GmbH & Co. KGaA
7.	Terrestrial solar photovoltaics, Tapan Bhattacharya, 1998, Narosa Publishing House

P	aper Code:	Paper: Thermoluminescence dosimetry	L	T/P	C		
]	Paper ID:		4	-	4		
Marki	ng Scheme:						
1.	Teachers Continu	ous Evaluation: 25 marks					
2.	Term end Theory Examinations: 75 marks						
Course	e Objectives:						
1:	To give knowled	ge about various radiation sources their measurem	ents and	radiatio	n		
	safety						
2:	To understand c	oncepts of TL dosimeters					
3:	To be aware of r	ecent research trends in TLD					
4:	To understand p	reparation methods of TL dosimeters and their app	lications				

Course	Outcomes	(CO):							
CO1:	Gained the knowledge of radiations, doses and safety limits								
CO2:	Understoo	d TLD and its dosime	eter evaluations tech	niques.					
CO3:	Studied ab	out TL dosimetry and	d their applications						
CO4:	Have suffic	cient knowledge of re	ecent research trend	s in TLD.					
Course	Outcomes (O	CO) to Programme O	utcomes (PO) Mappir	ng (Scale 1: low, 2: Me	edium, 3: High)				
C	O/PO	PO1	PO2	PO3	PO4				
	CO1	2	3		3				
(CO2	2	3	1	3				
(CO3 2 3 3 3								
(CO4	3	3	3	2				

UNIT-I

Definition of radiation and its types, Ionizing and non ionizing radiation, Quantities and units, Interaction of radiation with matter, Sources of radiation: Natural and Artificial. Radioactive sources: beta, alpha, gamma and X ray sources, Measurement of radiation: different type of dosimeters, Occupational Exposure Limits, Dose limits to Public, General safety of radiation sources, Radiation Measuring instruments, Radiation Hazard evaluation and control, Regulatory requirements: National Regulatory Body, safety standards.

UNIT-II

Luminescence mechanism, Principle of Thermoluminescence, Application of Thermoluminescence: Personnel monitoring, environmental monitoring, radio diagnostics or radiotherapy, food processing, Models of Thermoluminescence: traps and recombination centres, simple model; alternate model; Thermoluminescence glow curve analysis: Evaluate of TL parameters E and s, Peak shape method, curve fitting, computerised glow curve deconvolution. TL properties: glow curve structure, dose response, energy response, annealing procedures, fading, reproducibility.

UNIT-III

Various type of TLD phosphor; tissue equivalent and non tissue equivalent phosphor. Method of preparation, melting method, co precipitation method and crystal growth method: edge defined film fed growth technique: Advantage of EFG technique for preparing phosphor in the form of sheet: Growth procedure.

UNIT-IV

Applicability for TL dosimeter for personnel monitoring and Radiotherapy Treatment; Patient skin dose distribution; treatment planning and quality assurance in radiation therapy, Environmental monitoring, recent research trends in TLD dosimetry

Suggested Readings and References

1. The physics of radiation therapy, Faiz M. Khan, 4th edition (2010), Lippincott, Williams and Wilkins, USA.

2. Fundamental of X-ray and Radium Physics - Joseph Selman, (1970). Charles C. Thomas Publisher.

3. Basic Medical Radiation Physics – Stanton, (1969), New York : Appleton-Century-Crofts.

4. Radiation Detection and Measurement, 3rd Edition, Wiley, New York (2000), G.T. Knoll.

5. Introduction to Radiological Physics and Radiation Dosimetry, Wiley, New York (1986), F.H. Attix.

6. Thermoluminescence of solid, Cambridge Solid State Science Series, (1988), S.W.S. McKeever.

Paj	per Code:		Paper: Ion Beam		L	T/P	С	
P	aper ID:				4	-	4	
Marki	ng Scheme:			1				
	• Tead	chers Continuc	ous Evaluation: r	narks				
	• Tern	n end Theory I	Examinations: n	narks				
Course	Objectives:	•						
1:	-	chnology is cu	rrently one of the	most modern	topics	in nucle	ar	
		technology.			•			
2:	The main ob	jective of ion	beam in materials	science course	e is to	train		
	students wit	th new acceler	ator technology ir	the field of re	esearch	n, health		
	care, indust	ry and differer	nt theoretical desig	n and usage o	of varic	ous		
	accelerators	5.						
3:	Ion beam ar	nalysis (IBA) fo	r materials, mater	ial modificatio	ns and	l create		
	nanostructu	ires & applicat	ions.					
4:	The course f	focus is skills b	ased.					
Course	e Outcomes (C	-						
CO1:			ar with the basic to	•				
			eam optics, vacuur		ion im	plantatio	on	
			ilable around the v					
CO2:	Develop nev	Develop new processes for nanofabrication by ion beam.						
CO3:	Future Tecl	nology & Ar	polications like: (a		on la	ser (FFI) (b	
CO3:			oplications like: (a		on La	ser (FEI	.) (b	
CO3:		nnology & Ap cting Linacs&	•		on La	ser (FEI	_) (b	
CO3: CO4:	Supercondu	cting Linacs&	•	a) Free Electr				
	Supercondu On complet	cting Linacs&	Cyclotrons.	a) Free Electr ill be ready for	. assigi	nments a	ind	
	Supercondu On complet placement i	cting Linacs& ion of this cou n the growing	Cyclotrons. rse, the student w	a) Free Electr ill be ready for ology in many	· assigi fields	nments a like, hea	ind Ith	
	Supercondu On complet placement i care, medici	cting Linacs& ion of this cou n the growing	Cyclotrons. rse, the student w accelerator techno echnology, nuclear	a) Free Electr ill be ready for ology in many	· assigi fields	nments a like, hea	ind Ith	
CO4:	Supercondu On complet placement i care, medici based resea	cting Linacs& ion of this cou n the growing ines, reactor to rch and indust	Cyclotrons. rse, the student w accelerator techno echnology, nuclear	a) Free Electr ill be ready for blogy in many technology a	assigi fields nd acc	nments a like, hea elerator	ind Ith	
CO4:	Supercondu On complet placement i care, medici based resea	cting Linacs& ion of this cou n the growing ines, reactor to rch and indust	Cyclotrons. rse, the student w accelerator techno echnology, nuclear ry.	a) Free Electr ill be ready for blogy in many technology a	assigi fields nd acc	nments a like, hea elerator	ind Ith	
CO4: Course Mediu	Supercondu On complet placement i care, medici based resea Outcomes (C	cting Linacs& ion of this cou n the growing ines, reactor to rch and indust	Cyclotrons. rse, the student w accelerator techno echnology, nuclear ry.	a) Free Electr ill be ready for blogy in many technology a	assigi fields nd acc	nments a like, hea elerator	ind lth	
CO4: Course Mediu	Supercondu On complet placement i care, medici based resea Outcomes (C m, 3: High)	cting Linacs& ion of this cou n the growing ines, reactor to rch and indust CO) to Program	Cyclotrons. rse, the student w accelerator techno echnology, nuclear ry. nme Outcomes (P(a) Free Electr ill be ready for ology in many technology an D) Mapping (S	assigi fields nd acc	nments a like, hea elerator : low, 2:	ind lth	
CO4: Course Mediu CC	Supercondu On complet placement i care, medici based resea coutcomes (C m, 3: High) D/PO	cting Linacs& ion of this cou n the growing ines, reactor to rch and indust CO) to Program PO1 3 3	Cyclotrons. rse, the student w accelerator techno echnology, nuclear ry. nme Outcomes (Po	a) Free Electr ill be ready for blogy in many technology ar D) Mapping (S PO3	assigi fields nd acc	nments a like, hea elerator : low, 2: PO4	ind lth	
CO4: Course Mediu CC	Supercondu On complet placement i care, medici based resea Outcomes (C m, 3: High) D/PO	cting Linacs& ion of this cou n the growing ines, reactor to rch and indust CO) to Program PO1 3	Cyclotrons. rse, the student w accelerator techno echnology, nuclear ry. me Outcomes (PO PO2 3	a) Free Electr ill be ready for blogy in many technology an D) Mapping (S PO3 3	assigi fields nd acc	nments a like, hea elerator : low, 2: PO4 3	ind lth	

Unit I:

Accelerators: Accelerators, Types of accelerators, [Introduction of Electrostatic accelerators–Cockcroft-Walton, Van–de–Graf, linear accelerator] and compression & applications, Pelletron, Cyclotron, Synchrotron, Nuclear energy and uses, status of accelerators in India and Abroad.

Unit II:

Vacuum: Basic principles of vacuum technology and brief overview, Elements of a vacuum system, Vacuum coating system and their importance, Types of vacuum pumps and applications, Rotary

pump, Diffusion pump, Pirani gauge, Thermocouple gauge, Ultra high vacuum technology, Leak detection techniques.

UNIT III:

Ion interaction with matter: Ion stopping, energy losses, effective charge of moving ion, high energy and low energy losses, ion range and distribution, straggling,

Nano-structuring by Ion beams: Synthesis of nanostructured materials under electronic excitation and nuclear energy loss, nanostructures within ion track and at the surface by self-organization, nano-pattering: ripple formation, nano-dot formation.

Unit IV

Ion beam-based techniques for material analysis and applications: Trace element analysis, Various methods, Rutherford backscattering spectrometry (RBS): Principle, instrumentation, working and applications, Elastic Recoil Detection Analysis (ERDA): Principle, instrumentation, working and applications, Nuclear reaction analysis (NRA): Principle, instrumentation, working and applications, Particle induced X–ray emission (PIXE): Principle, instrumentation, working and applications, Accelerator mass spectrometry (AMS): Principle, instrumentation, working and applications, I2]

Reference Books:

- 1. Materials Science with ion beam, Harry Bernas, Springer 2010
- 2. Accelerator Based Research in Basic and Applied Sciences, 2002, Amit Roy and D. K. Avasthi, Phoenix Publishers.
- 3. Introduction to High Energy Physics (4th edition) by D. H. Perkins 2000.
- 4. Swift Heavy Ions for Materials Engineering and Nano structuring, Springer, D. K. Avasthi. and G.K. Mehta,
- 5. Basic ideas and concepts in Nuclear Physics: An introductory approach by K Heyde, third edition, IOP Publication, 1999.
- 6. Introductory Nuclear Physics by K. S. Krane, Wiley-India Publication, 2008.
- 7. Nuclear Physics by R. Prasad, Pearson, 2014.
- 8. R.R. Roy and B. P. Nigam: Nuclear Physics, Theory and Experiment (John-Wiley and Sons, INC.)

	Code: CWC 107		nthesis of Nanom ction to Nanocom		L	Т/Р	C
Paper	ID: 905107				4	-	4
Markin	g Scheme:						
	• Te	achers Continuo	us Evaluation: r	narks			
	• Te	rm end Theory E	xaminations: n	narks			
Course	Objectives	:					
1:	To enable	students to lear	n about Chemical	precipitation a	and co-	precipit	atio
2:			w the basics of So				
3:		students to be o	competent in biolo	-			
4:	To enable	students to und	erstand the variou	is categories o	f Nano	compos	ites
Course	synthesis	nts will get prop which helps in ut	er knowledge of v tilizing the synthes h desired properti	sis technique n		•	
:02:		n to apply the	e chemical method se technique wh	•	-		
CO3:			e biological metho nthesize nanopart	-		nthesis v	whio
CO4:		nts will able to d characteristics	istinguish the type	es, Nanocompo	osites a	and their	r
	Jenneand						
Course	-	(CO) to Program	nme Outcomes (PO	D) Mapping (S	cale 1:	low, 2:	
Course Mediur	Outcomes	(CO) to Program	nme Outcomes (PC PO2	D) Mapping (S PO3	cale 1:	low, 2: PO4	
Course Mediur CO	Outcomes n, 3: High) /PO		-		cale 1:		,
Course Mediur CO	Outcomes m, 3: High) /PO 01	P01	PO2	PO3			
Course Mediur CO Cu	Outcomes n, 3: High) /PO 01 02	PO1	PO2	PO3	2		,
Course Mediur CO Cu	Outcomes n, 3: High) /PO 01 02 03	PO1 3 2	PO2 3 2	PO3 2 3	2		

Unit III:

Biological Methods of Synthesis: Use of bacteria, fungi, Actinomycetes, Viruses, Plants for nanoparticle synthesis.

Unit IV:

Various categories of Nanocomposites: Coupled nanocomposites, Capped nanocomposites, Core-Shell structured nanocomposites, Super hard Nanocomposites.

References

1. Chemistry of nanomaterials: Synthesis, properties and applications, CNR Rao, H.C. mult. Achim Müller, A. K. Cheetham, **2004**, Wiley-VCH Verlag GmbH & Co. KGaA,

2. Nano chemistry: A Chemical Approach to Nanomaterials, Geoffrey A Ozin, André Arsenault, Ludovico. Cademartiri, **2008**, Royal Society of Chemistry, Cambridge UK,

3. Nanobiotechnology: Concepts, Applications and Perspectives, Editors: C.M. Niemeyer, C.A. Mirkin,, **2004**, Wiley-VCH

4. Introduction to Nanotechnology, R. Singh, S. M. Gupta, **2016**, Oxford University Press

5. Nanocomposite Science and Technology, Pulickel M. Ajayan, Linda S. Schadler, Paul V. Braun, **2003**, Wiley, New York

6. The search for novel, super hard materials (Review Article), <u>Stan Vepřek</u>, **1999**, Journal of Vacuum Science & Technology A **17**, 2401 (1999); <u>https://doi.org/10.1116/1.581977</u>.

Paper Code:	Pape	: Biological Che	mistry	L	T/P	С			
Paper ID:				4	-	4			
Marking Scheme:									
• Tead	chers Continuo	us Evaluation:	marks						
• Terr	Term end Theory Examinations: marks								
Course Objectives:									
1: istrate know	ledge and ur	derstanding of	the principle	s that	goveri	n the			
structures,	functions ar	d metabolism	of macromo	blecules	s and	their			
	n in molecular								
· · ·		0	principles and	hacic					
	•	rstanding of the	• •						
instrumenta	ation to separa	te and identify th	ne macromolec	ules					
3: derstand the	e basic knowl	edge of enzym	atic catalysis	and i	ts regu	latory			
mechanism									
4: juire underst	tanding of de	signing target o	riented drug	svnthe	sis and	their			
	0			-,					
	ctivity evaluation	//I							
Course Outcomes (C	CO):								

CO1:		The students will understand the chemistry of carbohydrates, lipids, proteins and amino acids. The students will understand the principle and instrumentation of basic							
CO2:			• •		ion of basic				
	instrume	instruments used in separation of biomolecules							
CO3:	The stud	The students will understand the mechanism of enzyme action & identify the							
	classes c	f enzymes and re	egulation of metab	oolism.					
CO4:	The stud	ents will underst	and the synthesis	of bioactive mole	cules and their				
	biologica	al activity evaluat	ion.						
Course	e Outcome	s (CO) to Prograi	mme Outcomes (P	O) Mapping (Sca	le 1: low, 2:				
Mediu	m, 3: High)							
cc	D/PO	PO1	PO2	PO3	PO4				
0	01	3	-	-	-				
(202	-	3	-	-				
(03	-	-	3	-				
(204	-	-	-	3				

Unit-I

Introduction to Biomolecules: Amino Acids, Proteins, carbohydrates, Lipids and their metabolism. Protein modification: Enzymatic and non enzymatic.

Unit-II

Chromatography: Gas Chromatography and High Performance Liquid Chromatography- instrumentation, detectors and applications, Gel filtration, Ion Exchange chromatography, Affinity chromatography and Electrophoresis.

Unit-III

Enzymes: An Overview of Kinetics and Regulation, Biocatalysis Metabolic Pathways and their Regulatory Mechanisms.

Unit-IV

Synthesis of target oriented drugs and their biological activity evaluation: Synthesis of different target oriented molecules and their biological activities like antioxidant, antifungal, anticarcinogen, antimicrobial etc. evaluation.

Text/Reference Book:

1. Lehninger Principles of Biochemistry, Albert L. Lehninger , David L. Nelson, Michael M., 2004 Cox. 4th Edition. 2004. W H Freeman & Co.

2. Quantitative Chemical Analysis, Daniel C. Harris, 2006, 7th edition, 2006, W.H Freeman and Company.

3. Biochemistry, Lubert Stryer, 1995, 4th Edition. 1995, W H Freeman & Co.

Рар	per Code:	Раре	r: Natural Product	s and	L	T/P	С
			Instrumentation				
Pa	aper ID:				4	-	4
Markir	ng Scheme:						
	• Te	achers Continuo	us Evaluation: ı	marks			
	• Te	rm end Theory E	Examinations: r	narks			
Course	Objectives						
1:	To learn b	asic knowledge	of isolation and pu	irification of n	atural	molecul	es
2:	To study c	ompounds prod	uced by plants tha	at have biologi	cal act	ivity	
3:	To learn io technique		atural molecules	with the help o	of spec	troscop	ic
4:	To enable	students to com	npare natural mole	ecule with synt	hetic	molecule	5
Course	e Outcomes It offers ar		egy towards identi	fying novel na	tural p	oroducts	
CO2:			o discover bioacti nvestigative New		with sp	ecial	
CO3:	The stude		o understand spe		nnique	s [NMR,	IR,
CO4:	The stude project.	nts will be able t	o modify natural p	product as per	the ne	eed of th	е
	e Outcomes m, 3: High)	(CO) to Program	nme Outcomes (Po	D) Mapping (S	cale 1	: low, 2:	
cc	D/PO	PO1	PO2	PO3		PO4	
C	01	3	-	-		-	
(02	-	3	-		-	
(03	-	-	3		-	
(04	-	-	-		3	

Unit-I

Literature survey and identification of natural products

Unit-II

Characterization of Natural Products: Natural Product Chemistry and its importance in our life, Activity guided fractionation, isolation and characterization of leads from natural products spectroscopy.

Unit-III

Chromatography: Gas Chromatography and High Performance Liquid Chromatography- instrumentation, detectors and applications, TLC, Column chromatography, Gel filtration, Ion Exchange chromatography and Affinity chromatography and Electro- chromatography.

Unit-IV

Instrumentation: Nuclear Magnetic Resonance [NMR (¹H, ¹³C)], Infra red (IR) spectroscopy, Ulta Violet (UV) spectroscopy, Mass. Spectrometry, Electrophoresis.

Text/Reference Book:

- 1. Organic Spectroscopy by William Kemp (1991)
- 2. **Spectrometric Identification of Organic Compounds** by Robert M. Silverstein, Francis X. Webster, and David Kiemle
- 3. Quantitative Chemical Analysis by Daniel C. Harris
- 4. Isolation, identification and characterization of allelochemical/natural products by Diego A. Sampietro, Cesar A. N. Catalan, Mark A. Vattuone (2009)
- 5. Introduction to organic Spectroscopy by Laurence M. Harwood (1996)

Рар	er Code:	Paper: Heter Approa	rocyclic Chemistr ach	y & Synthon	L	T/P	С
Pa	aper ID:				4	-	4
Markin	g Scheme:	:					
	• T	eachers Continuo	us Evaluation: I	marks			
			xaminations: r	narks			
Course	Objective	s:					
1:	It is aime	d to skill students	s in designing the s	synthesis of im	portar	nt organ	ic
	molecule	-					
2:	-		utility of various h		npoun	ds	
3:	-		organic reagents i				
4:	To acquir	e knowledge on o	catalytic reactions				
Course	Outcomes	s (CO):					
CO1:			gn the synthesis o	•			
CO2:		-	synthesis of vario	us heterocycle	s and t	o use fu	irther
		ning new derivati					
CO3:	-	organic reagents	in a reaction and	can apply then	n in the	eir resea	rch
	project						
CO4:		ow to use catalyst					
		· · · •	nme Outcomes (Po	D) Mapping (S	cale 1:	low, 2:	
	m, 3: High)						
	/PO	PO1	PO2	PO3		PO4	
	01	3	2	2		3	
-	:02	3	2	2		3	
	:03	3	2	2		3	
C	04	3	3	2		2	

UNIT-I

Chemistry of Heterocyclic Compounds:

Introduction to Heterocycles: Nomenclature (Hantzsch Widman System), spectral characteristics, reactivity and aromaticity of monocyclic, fused and bridged heterocycles. Five and six-membered heterocycles with two or more hetero atoms: Synthesis, reactivity, aromatic character and importance of the following heterocycles: Pyrazole, Imidazole, Oxazole, Thiazole, Pyrimidine, Pyrazine, Oxazine, Thiazine, Triazoles, Oxadiazoles, Thiadiazoles, Triazines.

Synthesis and reactivity of Benzofuran, Benzothiophene, Benzopyrroles, Indole, Quinoline and Isoquinoline.

UNIT-II

Synthon Approach: Definition of terms-disconnection, synthon, functional group interconversion(FGI), Basic rules in Disconnection, Designing Organic Synthesis: rearrangement in synthesis, use of ketene in synthesis, aromatic heterocycles five member rings and synthesis of five and six member rings.

Use of synthon approach in the synthesis of following compounds: Terfenadine, Ibuprofen, Propanolol, Fentanyl, Ciprofloxacin, Diclofenac.

UNIT-III

Organometallic and Non-organometallic Reagents:

Preparation, properties and applications of the following in organic synthesis with mechanistic details: Lithium aluminium hydride, Lithium Diisopropylamide, Trimethylsilyl iodide, Diazomethane, Polyphosphoric acid, Dicyclohexylcarbodiimide, Lead Tetra-acetate, Osmium tetraoxide.

Organocopper Reagents, Organochromium Reagents, Organosilicon Reagents and Organo-nonmetallic Reagents.

UNIT-IV

Industrial Oxidizing and Reducing Agents: Reactions and mechanism of industrial Oxidizing agents: $KMnO_4$, $K_2Cr_2O_7$ and H_2O_2 .

Reducing agents: Na_2SO_3 and $Na_2S_2O_3$.

Industrial Metals: Catalytic Reactions (hydrogenation, Zeigler Natta process, Wacker process and Fischer Tropsch process) of Raney nickel, Pd, Cr, V, Pt and Ti.

References:

1. Organometallics in J.M. Swan and D. organic synthesis C. Black, 1974, Champman and Hall

2. Designing of S. Warren organic synthesis, 1991, Wiley

3. Advanced Organic Jerry March chemistry, 6th edition, 2006, Wiley Eastern 4th edition

4. Some Modern W. Carruthers Methods of Organic Synthesis, 4th edition, 2005, Cambridge University Press

5. Advanced Organic Chemistry, Part B, F. A Carey and R.J. Sundeberg, 5th edition (2007) Springer

Pap	er Code:		nthesis and Appli phosphorus Com		L	T/P	С
				<u>Journas</u>			
Pa	aper ID:				4	-	4
Markir	ng Scheme:						
	• Teac	hers Continuo	us Evaluation: r	marks			
	• Tern	n end Theory E	xaminations: r	narks			
Course	Objectives:						
1:			various organomet	tallic reagents	, their _l	properti	es
			nce in synthesis.				
2:			try of Phosphorus		•		
		enes) and thei	r stabilization by c	complexation v	with or	ganome	tallic
	reagents.						
3:			mistry of variety of	• •	-		
		•	Phosphaalkenes, I	• •	es, Pho	sphapin	es
4			, Arbuzov reaction			· /) (0.0
4:			vith chemistry of p				0, 5,
		sphorus yndes	, Wittig reactions,	phosphonates	s anu li	nen	
	application.						
Course	Outcomes (C	0):					
CO1:	-	-	nthesise various o	rganometallic	reager	nts for	
		-	of different organ	-	-		
CO2:			arn the synthesis o		-		
			nes) <i>in-situ</i> and by				
	-		with C-C, C-O, C-N	••• •			
	3-,4-,5-,6-m	embered P-he	terocycles or inse	rtion reaction	s with	C-X	
	(Halogens /	non-decompo	sable) bonds to iso	plate a variety	of pho	osphoru	S
	compounds	with P-X bond	(decomposable b	y soil bacteria).		
CO3:	Students wil	ll be able to sy	nthesise a variety	of phosphoru	s comp	ounds li	ike
	Phosphines/	Phosphanes,	Phosphaalkenes, I	Phosphaalkyne	es, Pho	sphapin	es
		es, Phosphites					
CO4:			idise a variety of				
	-		lp of suitable oxid				dine-
			, S, Se, Te etc. Stud				
			III)/ P(V) compour	nds / complex	es via c	omplex	ation
Course	and decomp		ma Outcomes (D) Manuture / (aala 1	Jan 2:	
	Outcomes (C m, 3: High)	U) to Program	nme Outcomes (Po	וע iviapping (S	cale 1:	10W, 2:	
CC)/PO	PO1	PO2	PO3		PO4	
C	:01	3	3	3		3	
C	:02	3	3	3		3	
C	03	3	3	3		3	
C	:04	3	3	3		3	

Unit I

<u>Organometallic Reagents in Synthesis:</u> Metallated saturated hydrocarbons, metallated alkenes, metallated aromatic compounds, metallated heterocyclic compounds and heteroatom stablised organometallic reagents.

Unit II

<u>Chemistry of Phosphorus (I) Compounds</u>: Phosphinidenes, synthesis and stabilization of phosphinidenes, singlet and triplet phosphinidenes, insertion reactions of phosphinidenes, reagents to generate phosphinidenes.

Unit III

<u>Chemistry of Phosphorus (III) Compounds</u>: Synthesis and stabilization Phosphines/ Phosphanes, Phosphaalkenes, Phosphaalkynes, Phosphapines Phosphazenes, Phosphites, Arbuzov reactions.

Unit IV

<u>Chemistry of Phosphorus (V) Compounds</u>: Phosphine chalcogenides- synthesis and their application, Phosphorus ylides, Wittig reactions. Arbuzov reactions, phosphonates.

Suggested Readings and References

1. Organometallic Reagents in Synthesis, Paul R. Jenkins, 1992, Oxford

2. Phosphorus Ylides, Oleg I. Kolodiazhnyi, 1999, Wiley-VCH, Weinheim

Multiple Bonds and Low Coordination in Phosphorus Chemistry, F. Mathey, Edited by M. Regitz and O. J. Scherer, 1990, Georg Thiene Verlag, New York
 Phosphorus: the Carbon Copy, K. B. Dillon, F. Mathey, and J. F. Nixon, 1998, Wiley, Chichester

Paper Code:			Synthesis, Isolation of Air Sensitive C		L	T/P	С
Pa	aper ID:				4	-	4
Markir	ng Scheme:						
	• Tea	chers Continuo	us Evaluation: i	marks			
	• Terr	n end Theory E	xaminations: r	narks			
Course	Objectives:						
1:	methods of	distillation / p	rn about various ourification require	d for various t	ypes o	f organi	с
	solvents un	der normal cor	ditions and under	⁻ vacuum using	g nomo	ograph	
2:	used like Sc Young tube	hlenk Apparati	nowledge of type us- round bottom id the important p	Schlenk flask,	Schlen	k tubes,	
3:	Students wi compounds		he synthesis and I	ourification of	air ser	nsitive	
4:			isolate the air ser	•			r
Course	with differe	II hone their sk nt drying agen	ills independently ts and particularly	about high bo	oiling s	olvents	
			er vacuum with th				
CO2:	Apparatus-	round bottom	vith sophisticated Schlenk flask, Sch ing the synthesis.	-			ve
CO3:	Students wi compounds low temper	ll be able to ca and their puri ature under ind	rry out independe fication by recryst ert atmosphere, w at low temperatu	allization at ro /ashing/ remo	om tei	mperati	ire /
CO4:	Students wi applying the	ll be able to iso	blate air sensitive o of column chroma	compounds fr			
			ime Outcomes (Po	O) Mapping (S	cale 1:	low, 2:	
)/PO	PO1	PO2	PO3		PO4	L
	01	3	3	3		3	
	02	3	3	3		3	
	03	3	3	3		3	
	04	3	3	3		3	

Unit I
Purification: Distillation of organic solvents and distillation under vacuum and use of nomograph
(manometer / vacuum pump and Schlenk Apparatus) to establish b. p. of a solvent/ compound at various
pressures, common drying agents, design of apparatus for distillation under inert atmosphere of dry
nitrogen or argon gas.

Unit II

<u>Schlenk Techniques:</u> Synthesis of air sensitive compounds and manipulation of air sensitive reactions. Designs of Schlenk Apparatus- round bottom Schlenk flask, Schlenk tubes, Young tubes.

Unit III

<u>Purification of air sensitive compounds</u>: Recrystallization at room temperature / low temperature under inert atmosphere, washing/ removal of impurities from unstable compounds at low temperature. Unit IV

<u>Chromatography Techniques</u>: column chromatography and low temperature column chromatography, design of column for low temperature chromatography, types of silica gel and their characteristics and types of alumina.

Suggested Readings and References

1. A laboratory handbook of chromatography Synthesis, E.Heftmann, **1975**, New York

- 2. Organic Experiments, K. L. Williamson, 2007, New York
- 3. Organometallic Reagents in Synthesis, R. Jenkins, 1992, Oxford

Рај	per Code:	Paper: Math	ematical Modellin	g & Ecology	L	T/P	С
Pa	aper ID:				4	-	4
Markin	ng Scheme:						
	• Tead	chers Continuo	us Evaluation: m	narks			
	• Tern	n end Theory E	xaminations: m	arks			
Course	e Objectives:						
1:	To develop	the Mathemat	ical skill of using va	rious mathen	natical	method	ls.
2:		ents understar interpreted.	nd how mathemati	cal models are	e form	ulated,	
3:		nts appreciate tical real-life p	the power and lim roblems	itations of ma	athem	atics in	
4:	Introduce 3		world of mathema		ing u		
			es, and the limitati				
Course		the possibilitie					
Course CO1:	mechanics,	the possibilitie		ons			
	mechanics,	the possibilitie	es, and the limitati	ons g			
CO1:	mechanics, e Outcomes (C Students wi Students wi	the possibilitie CO): Il develop scien Il be able to do	es, and the limitati	ons g s for the char	nges in	a system	m.
CO1: CO2:	mechanics, e Outcomes (C Students wi Students wi Students wi	the possibilitie CO): Il develop scien Il be able to do Il able to take validity and acc	es, and the limitati ntific understandin sensitivity analysis	ons g s for the char s tactical and s	nges in strateg	a system	m.
CO1: CO2: CO3: CO4: CO4:	mechanics, e Outcomes (C Students wi Students wi Students wi Assess the v problem rec	the possibilitie CO): Il develop scier Il be able to do Il able to take validity and acc quires	es, and the limitati ntific understandin sensitivity analysis decisions including	ons g s for the char tactical and s oach relative	nges in strateg to wh	a system gic decis at the	m.
CO1: CO2: CO3: CO4: COurse Mediu	e Outcomes (C Students wi Students wi Students wi Assess the v problem rec Outcomes (C	the possibilitie CO): Il develop scier Il be able to do Il able to take validity and acc quires	es, and the limitati ntific understandin sensitivity analysis decisions including uracy of their appr	ons g s for the char tactical and s oach relative	nges in strateg to wh	a system gic decis at the	m. ions.
CO1: CO2: CO3: CO4: Course Mediu CC	e Outcomes (C Students wi Students wi Students wi Assess the v problem rec Outcomes (C m, 3: High)	the possibilitie CO): Il develop scien Il be able to do Il able to take validity and acc quires CO) to Program	es, and the limitati ntific understandin sensitivity analysis decisions including uracy of their appr me Outcomes (PO	ons g s for the char g tactical and s oach relative) Mapping (S	nges in strateg to wh	a system gic decis at the : low, 2 :	m. ions.
CO1: CO2: CO3: CO4: Course Mediu CC	mechanics, e Outcomes (C Students wi Students wi Students wi Assess the v problem rec e Outcomes (C m, 3: High) D/PO	the possibilitie CO): Il develop scier Il be able to do Il able to take validity and acc quires CO) to Program PO1	es, and the limitati ntific understandin sensitivity analysis decisions including uracy of their appr me Outcomes (PO PO2	ons g s for the char tactical and s oach relative D) Mapping (S PO3	nges in strateg to wh	a system gic decis at the : low, 2: PO4	m. ions.
CO1: CO2: CO3: CO4: CO4: Mediu CC COURSE Mediu	mechanics, e Outcomes (C Students wi Students wi Students wi Assess the v problem rec e Outcomes (C m, 3: High) O/PO C01	the possibilitie CO): Il develop scier Il be able to do Il able to take validity and acc quires CO) to Program PO1 2	es, and the limitati ntific understandin sensitivity analysis decisions including uracy of their appr me Outcomes (PO PO2 3	ons g s for the char g tactical and s tactical and s oach relative D) Mapping (S PO3 3	nges in strateg to wh	a system gic decis at the : low, 2: PO4 2	m. ions.

Unit-I

Deterministic and stochastic models, tools, techniques, modeling approaches. Models of single and interacting populations, prey-predator, competition, chemical state, AIDS/HIV/ SARS. Epidemic and genetic models. Model for dialysis, Model for brain tumour.

Unit-II

Single species models, Exponential, logistic, Gompertz growth, Harvest model, Discrete-time and Delay model, Interacting population model, Dynamics of exploited populations, Spatially structured models.

Unit-III

Models for traffic flow, computer data communications, Stock Market, spatio-temporal pattern. Modeling of Physical and Engineering systems -Heating and cooling systems, Henon-Heiles systems, Hydro power plant, fuel injection systems and ankle joint.

Unit-IV

Age-structured models, Leslie matrix, Randomly fluctuating Environment, prey-predator and multi-species models in stochastic environment.

The selection of programming languages and solving tools for applications will be done accordingly.

Recommended Books:

- 1. Mathematical Modelling by J.N. Kapur, New Age International, 1998
- 2. Mathematical Biology by J.D. Murray, Springer, 2003
- 3. Elements of Mathematical Ecology by Mark Kot, Cambridge University Press, 2001
- 4. Mathematical Models & Methods for Real World Systems by Frauti, Siddiqui, Taylor Francis Group (CRC), 2005

Pap	per Code:	Рар	er: Wavelet Analy	ysis	L	T/P	С		
Pa	aper ID:				4	-	4		
Markir	ng Scheme:								
	• Tea	chers Continuo	ous Evaluation: i	marks					
	• Ter	m end Theory E	xaminations: r	narks					
Course	Objectives:								
1:	This course	e will provide ar	introduction to tl	he theory of w	avelet	s.			
2:	This course the data	This course will develop skills to extract information, analyze and interpret the data							
3:		h the theory ne nsformations.	cessary to unders	tand and use w	vavele	ts and			
4:	Explain the	properties and	application of wa	velet transforr	n.				
Course	Outcomes (CO):							
CO1:		vill be able to cla importance of	assify various wave it.	elet transforms	s and v	will get t	he		
CO2:		its will be able t te Wavelet Trar	o describe Contin sform (DWT).	uous Wavelet	Transf	orm (CW	/T)		
CO3:	The studer		o develop and rea	lize computati	onally	efficien	t		
CO4:	The studer transform.	it will have a kn	owledge of brief f	eatures and st	rength	ı of			
	Outcomes (m, 3: High)	CO) to Program	nme Outcomes (Po	O) Mapping (S	cale 1	: low, 2:			
cc	D/PO	PO1	PO2	PO3		PO4			
C	01	2	3	2		3			
C	02	3	2	3		1			
(03	1	1	3		3			
C	04	2	3	3		2			

Unit-I

Fourier and Inverse Fourier Transforms, Continuous-Time Convolution and the Delta Function, Fourier Transform of Square Integrable Functions. Fourier Series. Basic Convergence Theory and Poisson's Summation Formula. **Unit-II**

The Gabor Transform. Basic Properties of Gabor Transforms. The Integral Wavelet Transforms, Dyadic Wavelets and Inversions.

Unit-III

Basic Properties of Wavelet Transforms. The Discrete Wavelet Transforms. Orthonormal Wavelets, Wavelet frames & Multiband, Curvelets. Definition of Multiresolution Analysis and Examples.

Unit-IV

Properties Scaling Functions and Orthonormal Wavelet Bases. Construction of Orthonormal Wavelets. Daubechies' Wavelets and Algorithms.

The selection of programming languages and solving tools for applications will be done accordingly.

References:

1. The Fourier Transform & Its Applications, Ronald Bracewell, 2000, Mc Graw Hill

2.An Introduction to Wavelet, Charles Chui, 1992, Academic Press

3. Wavelets made easy, Yves Nievergelt, 1999, Springer-Verlag

4.Essential Wavelets for Statistical Applications & Data Analysis, Todd Ogden, 1996, Birkhaus Boston

Pa	per Code:	Paper: Nonli	near Dynamics		L	Т/Р	С		
Р	aper ID:				4	-	4		
Marki	ng Scheme:			1		•			
	• Tea	chers Continuo	us Evaluation: I	marks					
	• Terr	n end Theory E	xaminations: r	narks					
Course	e Objectives:								
1:	To understa systems	ind the nonline	ar dynamic syster	ns, from perio	dic to	chaotic			
2:	To understa	and the basic co	oncepts of fractal	geometry and	fracta	ls.			
3:	To introduc	e phase space	and dynamical sys	tem .					
4:	bduce mathe	matical model	ing of dynamical s	ystem.					
Course	Outcomes (-							
CO1:	The students are able to acquire enough knowledge of discrete and continuous dynamical system.								
CO2:	This course thinking.	This course will enhance the geometrical, computational and analytical thinking.							
CO3:	The students will be able to understand the basic classes of nonlinear systems and will be able to analyse them using analytic and diagrammatic methods.								
CO4:	The student will have an understanding of how and why a dynamical system becomes chaotic.								
	Outcomes ((m, 3: High)	CO) to Program	ime Outcomes (P	O) Mapping (S	cale 1	: low, 2:			
CO/PO PO1 PO2 PO3 PO4									
(01	1	2	1		2			
(02	3	3	3		3			
(03	3	3	3		3			
(04	2	2	3		2			

Unit-I

Central manifold and Normal form, attractors, 1D map, Logistic map, Poincare' maps, circle map. Bifurcations-Saddle-node, Transcritical, Hopf-bifurcation, Global bifurcations, Poincare's surface of sections, Melnikov's method for homoclinic orbits. Strange attractors & fractals dimentions. Henon map and Rossler system, Boxcounting, Hausdorff dimensions. Lyapunov exponent, Horseshoe map chaotic transitions, intermittency, crisis, quasiperiodicity, controlling & synchronization of chaos.

Unit-II

Fractals in nature, Mathematical fractals (the Koch curve and other), Mathematical chaos (the Lorenz attractor). The Cantor set, the Sierpinski triangle and carpet, Self-similar fractals, fractal dimension, modeling of biological growth, Box dimension. Random fractals: Fractal forgeries, Iteration initial value, orbit, fixed point (attracting, repelling, neither), k-cycle (attracting, repelling, neither), fixed points, Period doubling.

Unit-III

The Feigenbaum constant, similarity of the Feigenbaum diagram for different functions. Continuous dynamical systems and strange attractors, Discrete dynamical systems. Phase space. The motion of a pendulum.

Unit-IV

Mathematical modeling, Atractors of typical 2-dimensional systems. Nodes, saddles, focuses, limit cycles, Strange attractors, The Mandelbrot set, the Julia set, geometrical features of Julia and Mandelbrot sets.

The selection of programming languages and solving tools for applications will be done accordingly.

References

1. Dynamical Systems, Jurgen Jost, 2005, Springer

2.Dynamical Systems Stability, Controllability & Chaotic Behaviour, Werner Krabs, 2010, Springer 3.Fractals & Chaos, B.B. Mandelbrot, 2004, Springer

4. Stability of Dynamical Systems Continuous, discontinuous & Discrete Systems, Anthony N.

Michel, 2008, Birkhauser Boston

Paper Code:		Paper:	Differentiable Ma	nifolds	L	T/P	С	
Paper ID:				4	-	4		
Markir	ng Scheme:	·						
 Teachers Continuous Evaluation: marks 								
	• Te	rm end Theory E	xaminations: r	narks				
Course	• Objectives							
1:	To give ba	sic concepts of	differentiable mar	nifolds				
2:	To give int	roduction about	t calculus on differ	entiable mani	folds			
3:	To give int	roduction about	t connections, Rier	mannian metri	cs and	curvatu	ires	
	on differe	ntiable manifold	S					
4:	To introduce variations of arc length and exponential maps, Jacobi vector							
	field							
Course	Outcomes	· ·						
CO1:			oncepts of manifo					
CO2:			o apply calculus o					
CO3:			o compute Riemar				ures	
CO4:	Students will learn to compute first and second variation of arc length,							
	exponential maps and its applications on smooth manifolds							
		(CO) to Program	nme Outcomes (Po	D) Mapping (S	cale 1:	low, 2:		
	m, 3: High)		1					
CO/PO		PO1	PO2	PO3		PO4		
	01	3	2	1		2		
CO2		3	2	1		2		
	03	3	2	1		2		
C	04	3	2	1		2		

<u>Unit I:</u>

<u>Introduction</u> : Topological and differentiable manifold with examples, product manifolds, vector field and tangent space, Lie brackets, differential map and Jacobians, immersions and imbeddings, differential forms and cotangent space, pull back map, geodesic and parallel transportation, covariant derivative and coefficients of affine connections.

Unit II

<u>Calculus on Manifolds</u> : Exterior derivative, Lie derivative, gradient, curl, divergence, Laplacian, Hessian on manifolds, interior product, orientations and volume element, integration in Rⁿ and its generalisation to manifolds, Stoke's theorem

Unit III:

<u>Riemannian Connections and Curvatures</u>: Levi-Civita connections, torsions and symmetry, Riemannian metrics and Riemannian connections, Riemannian curvature, sectional curvature, Ricci curvature, scalar curvature, connection forms, structural equations, curvature forms.

Unit IV:

:

<u>Variations of Arc Length</u>: First and second variation of arc length, Bonnet Theorem, exponential map, Jacobi vector fields and conjugate points, Submanifolds with examples, tangent space and normal space.

Suggested Readings and References

- 1. Riemannian Geometry, M. P. Do Carmo, **1992**, Birkhauser Boston
- 2. The Geometry of Physics, Theodore Frankel, 2011, Cambridge University press
- 3. Introduction to Smooth manifolds, J.M.Lee, 2013, Springer-Verlag New York

Paper Code:		Paper:	An Introduction to	o Fuzzy	L	T/P	С		
		Math	Mathematical Programming						
Pa	aper ID:				4	-	4		
Markir	ng Scheme:								
	• Tea	achers Continuo	ous Evaluation: r	marks					
	• Ter	m end Theory E	Examinations: n	narks					
Course	Objectives:								
1:	To underst	and the basic co	oncepts of fuzzy se	et theory					
2:	To underst	and the basic co	oncepts of Linear I	Programming	Proble	m and			
	Duality.								
3:	To know t	he application c	of Linear Programn	ning Problem	in Gam	e Theor	у		
4:	erstand the	application of f	uzzy set theory in	decision maki	ng.				
Course	Outcomes	(CO):							
CO1:	The end of	the course the	students are able	to acquire end	ough ki	nowledg	e to		
			I fuzzy set theory						
CO2: This course will help to understand mathematical programm						ning and matrix			
	game theory in a systematic and focused way.								
CO3:							Гhe		
	students will understand fuzzy linear programming and fuzzy matrix game								
CO4:	The students will study the application of fuzzy sets to decision making.								
Course	Outcomes	CO) to Program	nme Outcomes (Po	D) Mapping (S	cale 1:	low, 2:			
Mediu	m, 3: High)								
CC	D/PO	PO1	PO2	PO3		PO4			
C	01	2	3	3		3			
CO2		3	2	2		2			
C	03	2	2	2		3			
C	04	2	2	3		2			

UNIT I:

Duality in linear programming, two person zero-sum matrix games, linear programming and matrix game equivalence, two person non-zero sum (bi-matrix) games, quadratic programming and bi-matrix game, constrained matrix games.

UNIT II:

Introduction of fuzzy sets, Basic definitions and terminologies, Fuzzy set theoretic operations, alpha-cuts and their properties, Convex fuzzy sets, Zadeh extension principle, Fuzzy relations, Similarity relation and partitioning, Triangular norms (t-norms) and triangular conorms (t-conorms). Lingustic variable and linguistic Hedges. Fuzzy if-then rule.

UNIT-III

Introduction of fuzzy numbers, Interval arithmetic, Fuzzy numbers and their representation, Arithmetic of fuzzy numbers, Special types of fuzzy numbers and their arithmetic, Ranking of fuzzy numbers.

UNIT-IV

Decision Making in fuzzy environment, Fuzzy linear programming, Quadratic programming in fuzzy environment, A two phase approach for solving fuzzy linear programming, Linear goal programming under fuzzy environment, Matrix game with fuzzy goals, Matrix game with fuzzy pay-offs, Fuzzy Bi-matrix game.

References:

Fuzzy Mathematical Programming and Fuzzy Matrix, Bector, C.R. and Chandra, S.2005, V Games, Springer

Fuzzy Sets and Logic: Theory and Applications, Klir, G.J. and Yaun, B.,2004Prentice Hall, India Fuzzy Sets Theory and its Appliocations, Zimmermann, H.-J.,2001, 4th edition, Springer Game Theory, G.Owen, 1995, Academic Press, , San Diego

Paper Code:		Paper	Paper: Lie Groups and Homogeneous			T/P	С	
		spaces						
	Paper ID:				4	-	4	
Markin	g Scheme:	- I						
1.	Teachers Continuous Evaluation: 25 marks							
2.	Term end The	ory Examinations	: 75 marks					
Course	Objectives:							
1:	To give an int	roductory course	on the theory of Lie	groups				
2:	To give basic of	concepts about R	epresentation theory	/				
3:	To give an int	roductory course	on the theory of hor	nogeneous spaces				
4:	To introduce l	basic concepts ab	out symmetric space	es la				
		•	<i>.</i>					
Course	Outcomes (CO):						
CO1:	Students will	learn basic conce	pts of Lie groups					
CO2:	Students will	understand eleme	entary concepts abou	ut Representation	theory			
CO3:	Students will	be familiar with H	lomogenous spaces a	and with computat	ion of	bi-invaria	ant	
	metrics							
CO4:	Students will learn basic concepts about symmetric spaces and with computation of G-						G-	
	invariant metrics							
Course	Course Outcomes (CO) to Programme Outcomes (PO) Mapping (Scale 1: low, 2: Medium, 3: High)							
C	0/РО	PO1	PO2	PO3		PO4		
	CO1	3	2	1		2		
	CO2	3	2	1		2		
	CO3	3	2	1		2		
	CO4	3	2	1		2		

Unit-I

Lie groups, Example of Lie groups, Smooth manifolds: A review, tangent space of a Lie group- Lie algebras, One parameter subgroups, the Campbell-Baker-Hausdorff series, Lie theorems.

Unit-II

Representation theory: elementary concepts, Adjoint representation, Killing form, tori, Classification of compact and connected Lie groups, Complex semisimple Lie algebras.

Unit-III

Left invariant and bi-invariant metrics, Geometrical aspect of a compact Lie group, Homogeneous spaces, Coset manifolds, Reductive homogeneous spaces, Isotropy representation.

Unit-IV

G-invariant metrics, Riemannian connection, Curvature, Symmetric spaces, structure of symmetric space, Geometry of symmetric space, duality, Hypersurfaces in metric Lie groups.

Text books/Reference books:

- 1. Lie Groups: An Introduction through Linear Groups, Wulf Rossmann, Oxford Graduate Texts in Mathematics, Oxford University Press Inc., New York.
- 2. Naive Lie Theory, John Stillwell, Springer, 2008.
- 3. Matrix Groups: An Introduction to Lie Group Theory, Andrew Baker, Springer, 2003.
- 4. Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Brian C. Hall, Springer, 2004.
- 5. Lie Groups: An Approach through Invariants and Representations, Claudio Procesi, Springer, 2006.
- 6. Lie Groups beyond an Introduction, Anthony W. Knapp, Birkhauser, 2002.
- 7. Differential Geometry, Lie Groups, and Symmetric Spaces, Sigurdur Helgason, American Mathematical Society, 2001.

Paper Code:		Paper	: Research Values ar	nd Ethics	L	T/P	С			
	Paper ID:									
Markir	Marking Scheme:									
1.	Teachers Continuous Evaluation: 25 marks									
2.	Term end Theory Examinations: 75 marks									
Course	Objectives:									
1:	To develop a universal approach towards human values									
2:	To be able to s	trike a balance b	etween aspirations a	and happiness						
3:	To understand that humans are a part of nature and how being close to nature bring in joy and satisfaction									
4:	Select classical short stories from Indian context will expose the students to diverse and multifaceted subsections in Indian society									
	Outcomes (CO)									
CO1:	The students will get sensitized about the role of value education and learn to balance ambition & happiness									
CO2:	The students will be able to understand the importance of living in harmony with nature									
CO3:	The students will be able to see the relevance of Professional behavior and ethics									
CO4:	They will draw inspiration from the classical Indian literature narrated to them in the form of select short stories									
Course Outcomes (CO) to Programme Outcomes (PO) Mapping (Scale 1: low, 2: Medium, 3: High)										
CO/PO PO1 PO2 PO3 PO4										
	CO1 3		1	3		3				
	CO2 3		2	2		2				
	CO3	2	3	2		3				
	CO4	2	3	3		2				

Unit I

The Problem and Paradox of Happiness: Twin goals: happiness and just order; role of value education. Concept of good life-quality of life and subjective well-being; happiness, life satisfaction and positive affect; studying quality of life through surveys; and findings of quality of life surveys. Moral and Institutional approaches; and the inherent conflict between the two. Man and Society

Unit II

Happiness and Nature: Biophilia hypothesis- connections with nature and co-existence with other forms of life, Deep Ecology, Importance of meaningful contact with the natural world, solutions for a healthier, greener tomorrow, Indigenous and traditional knowledge system and its intellectual roots.

Unit III

Basics of Professional Ethics, Ethical Human Conduct: Human Conduct- based on acceptance of basics Human Values, Humanistic Constitution and Universal Human Order-skills, sincerity and fidelity. To identify the scope and characteristics of people-friendly and eco-friendly production systems..

Unit IV

Encompassing Different Stories/ narratives on Human Values from Indian Context.

Suggested Readings and References

- 1. Gaur, R.R., Sangal, S.and Bagaria, G., "A Foundation Course in Human Values and Professional Ethics", New Delhi: Excel Books, 2010.
- 2. Mike, W. Martin, "Paradoxes of Happiness", Journal of Happiness Studies, 2008, pp. 171-184.
- 3. Giddens, Anthony, "Sociology", 5th edition, Cambridge: Polity Press, 2006.
- 4. Ambedkar, B.R., Buddha and his dhamma, <u>http://www.scrubd.com/doc/16634512/Buddha-and-His-Dhamma-by-B-R-Ambedkar-Full</u> [accessed on 21 October, 2010]
- 5. Beteille Andre, "Antinomies of Society: Essays on Ideologies & Institutions", New Delhi: Oxford University Press, 2000.
- 6. Fikret Berkes, "Sacred Ecology", Second Edition Routledge Taylor & Francis Group, 2008.
- 7. Richard Louv, "Last Child in the Woods", Algonquin Books, 2008.
- 8. Ramakrishnan, E.V., "Indian Short Stories": (18700-200). Sahitya Akademi, 2012.
- 9. Davidar, David., "Cluch of Indian Masterpieces", Aleph Book Company, 2016.

"Contemporary Indian Short Stories", Sahitya Akademi, 2014.